Microarray Screening for Genes Involved in Oligodendrocyte Differentiation in the Zebrafish CNS
نویسندگان
چکیده
Within the vertebrate nervous system, myelination is required for the normal function of neurons by facilitating the rapid conduction of action potentials along axons. Oligodendrocytes are glial cells which myelinate axons in the central nervous system. Disruption of myelination and remyelination failure can cause human diseases such as multiple sclerosis. Despite the importance of myelination, the molecular basis of oligodendrocyte differentiation and myelination are still poorly understood. To understand the molecular mechanisms which regulate oligodendrocyte differentiation and myelination, novel genes were identified using a microarray analysis. The analysis used oligodendrocyte lineage cells isolated from transgenic zebrafish expressing fluorescent proteins in the oligodendrocyte lineage cells. Seven genes not previously known to be involved in oligodendrocyte differentiation were identified, and their expression during oligodendrocyte development was validated.
منابع مشابه
Mutation of pescadillo Disrupts Oligodendrocyte Formation in Zebrafish
BACKGROUND In vertebrates, the myelin sheath is essential for efficient propagation of action potentials along the axon shaft. Oligodendrocytes are the cells of the central nervous system that create myelin sheaths. During embryogenesis, ventral neural tube precursors give rise to oligodendrocyte progenitor cells, which divide and migrate throughout the central nervous system. This study aimed ...
متن کاملHistone deacetylase 1 is essential for oligodendrocyte specification in the zebrafish CNS
Histone deacetylases are critical components of transcriptional silencing mechanisms that regulate embryonic development. Recent work has shown that histone deacetylase 1 (hdac1) is required for neuronal specification during zebrafish CNS development. We show here that specification of oligodendrocytes, the myelinating cells of the CNS, also fails to occur in the hdac1 mutant hindbrain, but per...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملAn oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation.
Molecular mechanisms that control oligodendrocyte myelination during mammalian central nervous system (CNS) development are poorly understood. In this study, we identified Zfp488, an oligodendrocyte-specific zinc-finger transcription regulator, by screening for genes downregulated in the optic nerves of Olig1-null mice. The predicted primary structure of Zfp488 is evolutionarily conserved in ve...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 20 شماره
صفحات -
تاریخ انتشار 2011